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Abstract

Classical methods of regional frequency analysis (RFA) of hydrological variables face
two drawbacks: (1) the restriction to a particular region which can correspond to a
loss of some information and (2) the definition of a region that generates a border
effect. To reduce the impact of these drawbacks on regional modeling performance,5

an iterative method was proposed recently. The proposed method is based on the
statistical notion of the depth function and a weight function ϕ. This depth-based RFA
(DBRFA) approach was shown to be superior to traditional approaches in terms of
flexibility, generality and performance. The main difficulty of the DBRFA approach is
the optimal choice of the weight function ϕ (e.g. ϕ minimizing estimation errors). In10

order to avoid subjective choice and naı̈ve selection procedures of ϕ, the aim of the
present paper is to propose an algorithm-based procedure to optimize the DBRFA and
automate the choice of ϕ according to objective performance criteria. This procedure
is applied to estimate flood quantiles in three different regions in North America. One
of the findings from the application is that the optimal weight function depends on15

the considered region and can also quantify the region homogeneity. By comparing
the DBRFA to the canonical correlation analysis (CCA) method, results show that the
DBRFA approach leads to better performances both in terms of relative bias and mean
square error.

1 Introduction20

Due to the large territorial extents and the high costs associated to installation and
maintenance of monitoring stations, it is not possible to monitor hydrologic variables at
all sites of interest. Consequently, hydrologists have often to provide estimates of de-
sign events quantiles “QT”, corresponding to a large return period T at ungauged sites.
In this situation, regionalization approaches are commonly used to transfer information25

from gauged sites to the target site (ungauged or partially gauged) (e.g. Burn, 1990;
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Dalrymple, 1960; Ouarda et al., 2000). A number of estimation techniques in regional
frequency analysis (RFA) have been proposed and applied in several countries (De
Michele and Rooso, 2002; Haddad and Rahman, 2012; Madsen and Rosbjerg, 1997;
Nguyen and Pandey, 1996; Ouarda et al., 2001).

In general, RFA consists of two main steps: (1) grouping stations with similar hy-5

drological behavior (delineation of hydrological homogeneous regions) (Chebana and
Ouarda, 2007; Ouarda et al., 2006) and (2) regional estimation within each homoge-
nous region at the site of interest (e.g. GREHYS, 1996a; Ouarda et al., 2000, 2001).
The two main disadvantages of this type of regionalization methods are: (i) a loss of
information due to the exclusion of a number of sites in the step of delineation of hydro-10

logical homogeneous region, and (ii) a border effect problem generated by the definition
of a region.

To reduce or eliminate the negative impact of these disadvantages on the estima-
tion quality, a number of regional methods have been proposed that combine the two
stages (delineation and estimation) and used all stations (e.g. Ouarda et al., 2008; Shu15

and Ouarda, 2007, 2008). One of these regional method was developed recently by
Chebana and Ouarda (2008). This RFA method is based on statistical depth functions
(denoted by DBRFA for depth-based RFA). The DBRFA approach focuses directly on
quantile estimation using the weighted least squares (WLS) method to estimate param-
eters and avoids the delineation step. It employs the multiple regression (MR) model20

that describes the relation between hydrological and physio-meteorological variables
of sites (Girard et al., 2004).

After Chebana and Ouarda (2008), statistical depth functions are used in a number
of hydrological and environmental studies. For instance, Chebana and Ouarda (2011a)
used these functions in an exploratory study of a multivariate sample including location,25

scale, skewness and kurtosis as well as outlier detection. In another study, Chebana
and Ouarda (2011b) combined depth functions with the orientation of observations to
identify the extremes in a multivariate sample. Singh and Bardossy (2008, 2012) used
the statistical notion of depth to detect unusual events in order to calibrate hydrological
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models. Recently, some studies present further developments of the approach that cal-
ibrate hydrological models by depth function (e.g. Krauße and Cullmann, 2012; Krauße
et al., 2012).

The DBRFA method consists generally of ordering sites by using the statistical no-
tion of depth functions (Zuo and Serfling, 2000). This order is based on the similarity5

between each gauged site and the target one. Accordingly, a weight is attributed to
each gauged site using a weight function denoted ϕ. This function, with a suitable
shape, eliminates the border effect and includes all the available sites proportionally
to their hydrological similarity to the target site. Note that classical RFA approaches
correspond to a special weight function with value 1 inside the region and 0 outside.10

The definition of a region in the classical RFA approaches becomes rather a question
of choice of weight function ϕ according to a given criterion (e.g. relative root mean
square error RRMSE).

By construction, the estimation performance in the MR model using the DBRFA ap-
proach depends on the choice of the weight functions ϕ. Chebana and Ouarda (2008)15

applied several families of functions ϕ, where the corresponding coefficients were cho-
sen arbitrary and after several trials. In addition, even though the obtained results are
improvement of the traditional approaches, they are not necessarily the best ones.

The aim of the present paper is to propose a procedure to optimize the DBRFA ap-
proach over ϕ. This aim has theoretical as well as practical considerations. This proce-20

dure allows an optimal choice of the weight function ϕ and makes the DBRFA approach
automatic and objective. It should be noted that Ouarda et al. (2001) determined the
optimal homogenous neighborhood of a target site in the Canonical Correlation Analy-
sis (CCA) based approach. In Ouarda et al. (2001) the optimization corresponds to the
selection of the neighborhood coefficient, denoted by α, according to the bias or the25

squared error. The optimal choice of weight functions has been the topic of numerous
studies in the field of statistics (e.g. Chebana, 2004).

To optimize the choice of ϕ, suitable families of functions as well as algorithms are
required. In the present context, three families of ϕ are considered: Gompertz (ϕG)
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(Gompertz, 1825), logistic (ϕlogistic) (Verhulst, 1838) and linear (ϕLinear). These families
of functions are regular, flexible, S-shaped and have other suitable properties.

On the other hand, several appropriate algorithms can be considered (Wright, 1996).
These algorithms are not based on gradient computations. They are appropriate when
the objective function (criterion to be optimized) is not differentiable or the gradient5

is unavailable and must be calculated by a numerical method (e.g. finite differences).
Among these algorithms, the most commonly used are: the simplex method (Nelder
and Mead, 1965), the pattern search method of Hooke and Jeeves (Hooke and Jeeves,
1961; Torczon, 2000) and the Rosenbrock methods (Rao, 1996; Rosenbrock, 1960).
These methods are used successfully in several domains, and are particularly popular10

in chemistry, engineering and medicine. Specifically, in this paper the simplex and the
pattern search algorithms are used because of their advantages. Indeed, they are very
robust (e.g. Dolan et al., 2003; Hereford, 2001; Torczon, 2000), simple in terms of pro-
gramming, valid for nonlinear optimization problems with real coefficients (McKinnon,
1999) and helpful in solving optimization problems with and without constraints (e.g.15

Lewis and Torczon, 1999; Lewis and Torczon, 2002).
In this study, the proposed optimization procedure is applied to the flood data from

three different regions of the United States and Canada (Texas, Arkansas and southern
Quebec). For each region, the obtained results are compared with those of the CCA
approach.20

The present paper is organized as follows. Section 2 describes the used techni-
cal tools including depth functions, the WLS method, the definitions of the considered
weight functions and the optimization methods. Section 3 describes the proposed pro-
cedure. The data sets for the case studies are described in Sect. 4. The obtained
result are then presented in Sect. 5. The last section is devoted to the conclusions of25

this work.
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2 Background

In this section, the background elements required to introduce and apply the optimiza-
tion procedure of the DBRFA approach are briefly presented. This section contains
a number of basic notions as well as the principles of the employed optimization algo-
rithms.5

2.1 Depth functions

The absence of a natural order to classify multivariate data led to the introduction of
the depth functions (Tukey, 1975). They are used in many research fields, and were
introduced in water science by Chebana and Ouarda (2008).

For a given cumulative distribution function F on Rd (d ≥ 1), a depth function is any10

bounded, nonnegative function D(.;F ) which meets the following suitable properties:
(i) affine invariance, (ii) maximality at center, (iii) monotonicity relative to deepest point
and (iv) the depth of a point x should approach zero as the norm of x approaches
infinity (Zuo and Serfling, 2000).

Several depth functions were introduced in the literature including for instance the15

Simplicial volume (Oja, 1983), Halfspace (Tukey, 1975), Projection (Liu, 1992) and
Mahalanobis (Mahalanobis, 1936) depth function. A brief and detailed descriptions of
these functions are respectively available in Chebana and Ouarda (2011a) and Zuo
and Serfling (2000).

In this study the Mahalanobis depth function is used to order the sites in the sense20

that the deeper sites are hydrologically similar to the target site. This function is used
for its simplicity, interpretable values, and the relationship with the CCA approach used
in RFA (e.g. Chebana and Ouarda, 2008; Ouarda et al., 2001).

The Mahalanobis depth function is defined on the basis of the Mahalanobis distance
given by d2

A (x,y) = (x− y)′A−1 (x− y) between two points x,y ∈ Rd (d ≥ 1) where A is25

a positive definite matrix (Mahalanobis, 1936). This distance is used by Ouarda et al.
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(2001) in the development of the CCA approach. The Mahalanobis depth is given by:

MHD(x;F ) =
1

1+d2
A (x,µ)

(1)

F is a cumulative distribution function characterized by µ and A, where µ is a location
parameter vector and A is a matrix covariance parameter. It is important to note that
the Mahalanobis depth function has values in the interval [0,1].5

An empirical version of the Mahalanobis depth is defined by replacing F by a suitable
empirical function F̂N for a sample of size N. The empirical version of MHD converges
to the true version for large values of N (Liu and Singh, 1993). In the next sections, the
following notation is used for the Mahalanobis depth function:

MHDA(x;µ) =
1

1+d2
A (x,µ)

(2)10

2.2 Weight functions

Below are the definitions of the three families of weight functions ϕG, ϕlogistic and ϕLinear
considered in this paper along with special cases of functions ϕ for comparison pur-
poses.

2.2.1 Gompertz function15

The Gompertz function is usually employed as a distribution in survival analysis. This
function was originaly formulated by Gompertz (1825) for modeling human mortality.
A number of authors contributed to the studies of the characterization of this distribu-
tion (e.g. Chen, 1997; Wu and Lee, 1999). In the field of water resources, the Gompertz
function was adopted by Ouarda et al. (1995) to estimate the flood damage in the res-20

idential sector. The function ϕG is increasing, flexible, continuous and derivable (Zim-
merman and Núñez-Antón, 2001). The Gompertz distribution has different formulations
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one of which is given by:

ϕG(x) = cexp
{
−ae−bx

}
a,b,c > 0;x ∈ R (3)

where c is its upper limit, a and b are two coefficients which respectively allow to
translate and change the shape of the curve. Figure 1 shows the effects of these coef-
ficients on the form of ϕG. Note that this function starts at zero (starting phase), then5

increases exponentially (growth phase) and finally stabilizes by approaching the up-
per limit c (stationary phase) with 0 ≤ϕG(x) ≤ c. The inflection point of this function is( lna

b , ce
)
.

2.2.2 Logistic function

Verhulst (1838) proposed this function to study population growth. It is given by:10

ϕlogistic (x) =
c

1+ae−bx
a,b,c > 0;x ∈ R (4)

where the coefficients c, a and b play the same role as in ϕG.
This function has similar properties to those of ϕG (increasing, flexible, continuous,

derivable and with three phases). However, ϕlogistic is symmetric around its inflection
point

( lna
b , c2

)
which is not the case for ϕG.15

2.2.3 Linear function

It is a simple function, linear over three pieces corresponding to the three previous
phases. Explicitly it is given by:

ϕLinear(x) =


0 if x ≤ d1
x−d1
d2−d1

if d1 ≤ x ≤ d2,

1 if x ≥ d2

d2 > d1 > 0 (5)
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This function is considered as a weight function in the study of Chebana and Ouarda
(2008).

2.2.4 Indicator function

This function is given by:

ϕI (x) =

{
1 if x ∈ A
0 if x /∈ A

(6)5

where A is a subset in R (set of real numbers), such as an interval. The subset A
represents the neighborhood or the region in the classical RFA approaches. The weight
is equal to 1 if the site is included in the region, otherwise, it is 0.

In the case where the set A is the interval
[
Cα,p,1

]
with Cα,p = 1

1+χ2
α,p

and χ2
α,p is

the quantile of order α for p degrees of freedom, the DBRFA reduces to the traditional10

CCA approach (e.g. Bates et al., 1998). The corresponding weight function is denoted
by ϕCCA.

If A = [0,1] i.e. α = 0, then the DBRFA represents the uniform approach which in-
cludes all available sites with similar importance. The corresponding weight function is
denoted by ϕU.15

2.3 Weighted least squares estimation

In the RFA framework, the MR model is generally used to describe the relationship be-
tween the hydrological variables and the physiographical and climatic variables of the
sites of a given region. This model has the advantage to be simple, fast, and not requir-
ing the same distribution for hydrological data at each site within the region (Ouarda20

et al., 2001).
Let “QT” be the quantile corresponding to the return period T . It is often as-

sumed that the relationship between “QT”, as the hydrological variable, and the
527
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physio-meteorological variables and basin characteristics A1, A2, ... Ar takes the form
of a power function (Girard et al., 2004):

QT = β0A
β1

1 Aβ2

2 ...Aβr
r eε (7)

Taking s quantiles “QT” corresponding to s return periods, a vector Y =
(QT1,QT2, ...,QTs) of hydrological variables can be constructed. Then, by a log-5

transformation in Eq. (7) we obtain the multivariate log-linear model in the following
matrix form:

logY = (logX )β+ε (8)

where logX = (1, logA1, logA2, ..., logAr) is the matrix formed by (r) vector of the physio-
meteorological variables, β is the (r +1)×s matrix of parameters and ε represents the10

error of model (residual) with null mean vectors and variance-covariance matrix Γ:

E (ε) = 0 and Var(ε) = Γ (9)

If the number of sites in the regions is denoted by N, the parameter β can be estimated,
using the WLS estimation method, by:

β̂w = argmin
β

N∑
i=1

wi (logYi −β logXi )
′ (logYi −β logXi )15

= ((logX )′Ω logX )−1 (logX )′Ω logY (10)

where Ω = diag(w1, ...,wN ) is the diagonal matrix with diagonal elements wi and wi is
the weight for the site i . The matrix Γ is estimated by:

Γ̂w =

(
logY − β̂w logX

)(
logY − β̂w logX

)′
N − r −1

(11)20

Note that the log-transformation induces generally a bias in the estimation of “QT”
(Girard et al., 2004).
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2.4 Optimization

For a given objective function ζ (.), representing a criterion to be optimized, for simplicity
and without loss of generality, the described optimization methods aim to minimize ζ (.).
In the case of maximization of ζ (.), e.g. ζ (.) is the coefficient of determination R2, the
problem is equivalent to a minimization of the function −ζ (.).5

2.4.1 Nelder–Mead method

The Nelder–Mead method (Nelder and Mead, 1965), known as the simplex method, in
a d -dimensional problem, employs a set of d+1 points xl with l = 1, ...,d+1 where ζ (.)
is evaluated. These d +1 points can be seen as the vertices of a simplex. For instance,
in the plane d = 2, the three non-collinear points define the vertices of a triangle (sim-10

plex). Each iteration of the optimization starts with the points of a simplex and the corre-
sponding values of the function ζ (.). The simplex is modified through the operations of
reflection, expansion, contraction, or reduction, and a point xl is accepted or rejected
according to the value of ζ (xl ). At each iteration of the Nelder–Mead algorithm, two
transformations are possible: (i) only one point of the simplex will be modified, then,15

the new point replaces the worst one of the current simplex, or (ii) a set of d new points
will be considered. These d points and the best of the old points form the simplex of
the next iteration. This is the reduction operation (Lagarias et al., 1997). The research
direction of the optimum is defined by the worst point (with the highest value of ζ (.) and
the barycenter of the vertices except this point). The simplex can accelerate (expand)20

or decelerate (contract) in this direction to locate an optimal region and zoom (reduce)
towards the optimum. The algorithm terminates when the vertices function values ζ (xl )
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for l = 1, ...,d +1 become close to each other, i.e. the algorithm converges if:√√√√√d+1∑
l=1

(
ζ (xl )− ζ̄

)2

d
< τ with ζ̄ =

1
d +1

d+1∑
l=1

ζ (xl ) (12)

where τ is a small positive scalar to be determined by the user.
The Nelder–Mead method is a zero-order algorithm, i.e. a direct method which does

not require gradient evaluation. It is a widely used and referenced algorithm. It is gener-5

ally very efficient and fast compared to other methods (Lagarias et al., 1997). It requires
less evaluations of the objective function than multidirectional research (Wright, 1996).
This method deals with optimization problems without constraints or with boundary
constraints. In general, in Nelder–Mead algorithm, linear and nonlinear constraints are
not considered (Luersen and Le Riche, 2004).10

2.4.2 Pattern search method

The pattern search method works by creating iteratively a set of search directions. The
created search directions should be such that they completely span the search space.

At each iteration of the pattern search algorithm, the function ζ (.) is evaluated on the
points of the pattern (geometric shape such as a simplex) of size larger than d+1. If an15

improvement is detected, the associated point is accepted as a new current point, and
the size of the next pattern is preserved or increased. Otherwise, the size of the new
pattern is reduced. This method is applied to optimization problems with linear and/or
nonlinear constraints. A detailed description of this algorithm is available in Torczon
(2000).20
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3 Methodology

This section describes a general procedure for optimizing the DBRFA approach and
treats special cases where this procedure is applied using the weight functions defined
in Sect. 2.2.

3.1 General procedure5

In order to find the optimal weight function ϕ in the DBRFA approach, the procedure is
composed of three main steps. They are summarized as follows:

i. for a given class of weight functions, assess the regional flood quantile estimator
(Eq. 8) for a target site using the DBRFA approach. This estimator depends on
the weight function ϕ through its coefficients;10

ii. for a pre-selected criterion, calculate its value to quantify the precision of the
estimate from step i;

iii. using an optimization algorithm, optimize the criterion (objective function) calcu-
lated in step ii. The outputs of this step are the optimal function ϕ and the value
of the selected criterion.15

3.2 Description and application of the procedure

Suppose that i0 is the index of the target-site where Yi0 is unknown. In the first step

of the procedure, compute the regional estimators
(
Ŷi0

)
ϕ

for a given weight function.

This step was the subject of the study by Chebana and Ouarda (2008). To calculate
this estimator, the DBRFA approach is used. Note that the DBRFA includes an iterative20

procedure which is completely different from the one of the optimization algorithm. The
parameters of the starting estimator (initial point) of DBRFA iteration, denoted by β̂1,i0
and Γ̂1,i0 are calculated by assuming that Ω= IN , the identity matrix of dimension N, in

531

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/519/2013/hessd-10-519-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/519/2013/hessd-10-519-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 519–555, 2013

Optimal depth-based
regional frequency

analysis

H. Wazneh et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Eqs. (10) and (11). The starting estimator
(
Ŷ1,i0

)
ϕ

is obtained by replacing β with β̂1,i0

in Eq. (8). Then for each DBRFA iteration k, k = 2,3, ...,kiter, calculate the Mahalanobis
depth of the gauged site i , i = 1, ...,N, with respect to the target-site i0 (2) denoted by(
Dk,(i ,i0)

)
ϕ
= MHD(

Γ̂k−1,i0

)
ϕ

(
logYi ,

(
log Ŷk−1,i0

)
ϕ

)
. The number of iterations kiter is fixed

to ensure the depth convergence (generally kiter = 25 can be appropriate). The weight5

matrix at iteration k is defined by applying the function ϕ to the depth calculated at this
iteration. The parameters of the MR model at the kth iteration are estimated by:(
β̂k,i0

)
ϕ
=
(
(logX )′ (Ωk)ϕ logX

)−1
(logX )′ (Ωk)ϕ logY (13)

(
Γ̂k,i0

)
ϕ
=

(
logY −

(
β̂k,i0

)
ϕ

logX
)(

logY −
(
β̂k,i0

)
ϕ

logX
)′

N − r −1
(14)

10

where (Ωk)ϕ is the diagonal matrix such that:

(Ωk)ϕ = diag
(
ϕ
(
Dk,(1,i0)

)
ϕ

, ...,ϕ
(
Dk,(N,i0)

)
ϕ

)
(15)

Note that all these parameters depend on ϕ. The regional quantile estimator for the
site i0 in this iteration is:(
Ŷk,i0

)
ϕ
= exp

[(
logXi0

)(
β̂k,i0

)
ϕ

]
(16)15

In the second step of the procedure, we use the estimated parameters at the last
iteration of the previous step since the associated estimation error is the minimum
possible by construction.

Consequently, in order to simplify the notations in the rest of this paper we denote(
β̂i0

)
ϕ
=
(
β̂kiter,i0

)
ϕ

,
(
Γ̂i0

)
ϕ
=
(
Γ̂kiter,i0

)
ϕ

and
(
Ŷi0

)
ϕ
=
(
Ŷkiter,i0

)
ϕ

.20
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After calculating
(
Ŷi0

)
ϕ

in step i, we consider and evaluate one or several criteria in

step ii. These criteria allow to quantify the performance of the model and the precision
of the estimate. In this procedure, the calculated criteria are considered as functions
parameterized by the coefficients of ϕ and are used as objective functions in the opti-
mization step (step iii below).5

The relative bias (RB) and the relative root mean square error (RRMSE) are widely
used in hydrology, particularly in RFA. These two criteria are defined by:

RBϕ = 100× 1
N

N∑
i=1

Yi −
(
Ŷi
)
ϕ

Yi

 = 100× 1
N

N∑
i=1


Yi −exp

(
(logXi )

(
β̂i

)
ϕ

)
Yi

 (17)

RRMSEϕ = 100×

√√√√√√√ 1
N −1

N∑
i=1

Yi −
(
Ŷi
)
ϕ

Yi


2

= 100×

√√√√√√√√ 1
N −1

N∑
i=1


Yi −exp

(
(logXi )

(
β̂i

)
ϕ

)
Yi


2

(18)10

where Yi is the local quantile estimation for the i th site,
(
Ŷi
)
ϕ

is the regional estimation

by DBRFA approach using the weight function ϕ, and N is the number of sites in the
database. The (RB)ϕ measures the tendency of quantile estimates to be uniformly
too high or too low across the whole region and the (RRMSE)ϕ measures the overall15

deviation of estimated quantiles from true quantiles.
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Note that other criteria can be considered as well, such as the Nash criterion (NASH)
and the coefficient of determination (R2).

Finally in step iii, apply an optimization algorithm on the selected and evaluated
criterion of step ii. The algorithms to be considered are described in Sect. 2.4. The
form, generally complex and non-explicit of the criteria to optimize, suggests the use5

of zero-order algorithms. The application of these algorithms allows to find the optimal
function ϕ with respect to selected criteria.

Theoretically and generally, the two optimization algorithms suggested in Sect. 2.4
converge to a local minimum (or maximum) according to the initial point. To overcome
this problem and make the algorithm more efficient, two solutions are proposed in the10

literature: (a) for each objective function, use several starting points and calculate the
optimum for each of these points; the optimum of the function will be the best value of
these local optima (Bortolot and Wynne, 2005); or (b) use a single starting point and
each time the algorithm converges, the optimization algorithm restarts again using the
local optimum as a new starting point. This procedure is repeated until no improvement15

in the optimal value of the objective function is obtained (Press et al., 2002).
Based on the optimization procedure of the DBRFA approach described in Sect. 3,

the parameters of the optimization problem are the coefficients of the weight function.
Consequently, reducing the number of coefficients in ϕ can make the algorithm more
efficient and less expensive in terms of memory and computing time. If the weight20

function is one of the two functions Gompertz (Eq. 3) or logistic (Eq. 4), the coefficient
c represents the upper limit of these functions. As in the DBRFA approach, the upper
limit of ϕ is 1, namely the gauged site is completely similar to the target site, hence the

value c = 1 is fixed. In this case, the problem is reduced to find the couple
(
âN , b̂N

)
that optimizes one of the pre-selected criteria, such as (17) and (18).25

Moreover, in the classes ϕ =ϕG or ϕ =ϕlogistic, the optimization problem is applied
in semi-bounded domain (i.e. a > 0 and b > 0) and without other constraints (linear or
nonlinear). In this case, the Nelder–Mead algorithm can also be applied as well as the
Pattern search one (Luersen and Le Riche, 2004).
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On the other hand, in the case where ϕ =ϕLinear (Eq. 5), the inequality constraint
d2 > d1 > 0 is imposed. Therefore, the Nelder–Mead algorithm can not be considered.

4 Data sets for case studies

In this section we presente the data sets on which the DBRFA wil be applied the fol-
lowing section. These data come from three geographical regions located in the states5

of Arkansas and Texas (USA) and in the southern part of the province of Quebec
(Canada). The first region is located between 45◦ N and 55◦ N in the southern part of
Quebec, Canada. The data-set of this region is composed of 151 stations, each with
station has a flood record of more than 15 yr. The conditions of application of frequency
analysis (i.e. homogeneity, stationary and independence) are tested on the historical10

data of these stations in several studies (Chokmani and Ouarda, 2004; Ouarda and
Shu, 2009; Shu and Ouarda, 2008). Three types of variables are considered: phys-
iographical, meteorological and hydrological. The selected variables for the regional
modeling are also performed in Chokmali and Ouarda (2004). The selected physio-
graphical variable are: the basin area (AREA) in km2, the mean basin slope (MBS) in15

% and the fraction of the basin area covered with lakes (FAL) in %. The meteorological
variables are the annual mean total precipitations (AMP) in mm and the annual mean
degree days over 0◦ C (AMD) in degree-day. The selected hydrological variables are
represented by at-site specific flood quantiles (QST) in m3 km−2 s−1, corresponding to
return periods T = 10 and 100 yr.20

The two other considered regions correspond to a database of the United States Ge-
ological Survey (USGS). This database, called Hydro-Climatic Data Network (HCDN),
consists of observations of daily discharges from 1659 sites across the United States
and its Territories (Slack et al., 1993). The sites included in this database contain at
least 20 yr of observations. As part of the HCDN project, the United States are divided25

into 21 large hydrological regions.
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In this study, the data of the states of Arkansas and Texas (USA) are used for com-
parison purposes. The applicability conditions of frequency analysis as well as the
variables to consider are justified in the study of Jennings et al. (1994). The physio-
graphical and climatological characteristics are the area of drainage basin (AREA) in
km2, the slope of main channel (SC) in m km−1, the annual mean precipitation (AMP)5

in cm, the mean elevation of drainage basin (MED) in m and the length of main chan-
nel (LC) in km. The selected hydrological variables in these two regions are the at-site
flood quantiles (QT), in m3 s−1, corresponding to the return periods T = 10 and 50 yr.

The data-set of the states of Arkansas is composed of 204 sites. These data and
the at-site frequency analysis are published in the study of Hodge and Tasker (1995).10

Tasker et al. (1996) used these data to estimate the flood quantiles corresponding to
the 50 yr return period by the region of influence method (Burn, 1990).

The Texas data base is composed of 90 sites but due to the lack of some explanatory
variables at several sites, modeling was performed with only 69 stations. The data-set
used in this region is the same used by Tasker and Slade (1994).15

5 Results

The results obtained from the CCA-based approach are first presented and then com-
pared to those obtained by the optimized DBRFA approach.

The variations of the two performance criteria RB and RRMSE, obtained by the
CCA approach, as a function of the coefficient α for the three regions are presented20

in Fig. 2. The complete variation range of α (neighborhood coefficient) is the interval
[0, 1]. However, in this application, the range is [0, 0.30] for Quebec and Arkansas
regions and [0, 0.17] for the Texas region. These upper bounds of α are fixed to ensure
that all neighborhoods of the sites contain sufficient stations to allow the estimation by
the MR model. Note that it is appropriate to have at least three times more stations than25

the number of parameters in the MR model (Haché et al., 2002). Figure 2 indicates that,
for a given region, the same value of α optimizes the two criteria for the various return
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periods, even though this is not a general result (Ouarda et al., 2001). The optimal α
values are 0.25, 0.01 and 0.05, respectively for Quebec, Arkansas and Texas.

The positions of stations in the hydrological (W1, W2) and physiographical (V1, V2)
canonical space given in Fig. 3 for the three regions. The canonical correlations λ1 and
λ2 for Arkansas (λ1 = 0.973, λ2 = 0.470) and Texas (λ1 = 0.923, λ2 = 0.402) are larger5

than those of Quebec (λ1 = 0.853, λ2 = 0.281). This corresponds to a large optimal
value of α for the latter region. Indeed, the higher the canonical correlation, the smaller
the size of the ellipse defining the homogeneous neighborhood (Ouarda et al., 2001).
Consequently, the value of α should be small enough so that the neighborhood con-
tains an appropriate number of stations to perform the estimation in the MR model, and10

large enough to ensure an adequate degree of homogeneity within the neighborhood.
Figure 4 shows the projection sites of the three regions in the two canonical spaces

(V1, W1) and (V2, W2) corresponding, respectively to λ1 and λ2. This figure shows
that for these three regions, the relationship between V1 and W1 is approximately
linear, in contrast to V2 and W2. The presentation of a site in the space (V1, W1) is15

useful for an a priori information on the estimation error of this site. For example, in the
Quebec region, the two sites 66 and 122 are poorly estimated. By fitting a linear model
between V1 and W1 for each region, it is seen that the linearity assumption is more
respected in Arkansas and Texas than in Quebec (R2

Arkansas = 0.94, R2
Texas = 0.85 and

R2
Quebec = 0.73).20

The previous results show that the values of λ1, λ2, α and R2 can be used as indi-
cators of the quality of the homogeneity in a given region. In this application, the lower
values of λ1, λ2 and R2 as well as the higher value of α for Quebec compared to the
values of the other two regions indicate that the Quebec region is less homogeneous
than the two others. This conclusion needs to be verified by other criteria or statistical25

tests.
The DBRFA approach is applied by using the Mahalanobis depth function (2). The

optimal weight functions, from each one of the three considered families, are obtained
on the basis of the presented optimization algorithms (i.e. ϕG and ϕlogistic using Nelder
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Mead and ϕLinear using pattern search). They are presented in Fig. 5. The correspond-
ing results are summarized in Table 1. The optimization is made with respect to the
RB and RRMSE criteria. Note that, for a given region, the regional flood quantile es-
timation is more accurate for small return periods. This result is valid for local as well
as regional frequency analysis approaches (e.g. Chebana and Ouarda, 2008; Hosking5

and Wallis, 1997). In addition, Table 1 shows that the worst estimates are obtained
using the uniform approach (weight function ϕU). This justifies the usefulness of con-
sidering the regional approaches. Note that for all regions, DBRFA with optimal ϕ leads
to more efficient estimates in terms of RB and RRMSE than those obtained using the
CCA approach with optimal α. These results show also that the optimal coefficients of10

a given weight function depend on the chosen criterion (objective function). Finally, for
the southern Quebec region, the results of Chebana and Ouarda (2008) are very close
to those in the present paper in terms of values (Table 1). The reason for this closeness
is that the above authors forced the DBRFA approach to provide good results by trying
several different combinations of values of ϕ coefficients (i.e. iteration loop of coeffi-15

cients). Consequently, their trials took a long time and did not ensure the optimality of
the approach which is not the case for the present study.

According to Fig. 5, the form of optimal weight function depends on the considered
region. For instance, the steep S-curve (with long upper extremity) of the two regions
Arkansas and Texas depicts a large number of gauged sites similar to the target one;20

however, the high S-curve of Quebec shows a small number of gauged sites similar
to the target one. This result supports the previously mentioned conclusion about the
homogeneity level for these regions.

In order to visualize the influence of gauged sites on the regional estimation of a tar-
get site in the DBRFA and CCA approaches, assume that Texas site number 25 is25

a target site and has to be estimated using the remaining 68 gauged sites. Figure 6 il-
lustrates the weights allocated to each gauged site in the canonical hydrological space
(W1, W2) instead of the geographical space. The estimate is made with the optimal
α for the CCA approach and the optimal ϕG for the DBRFA approach. We observe
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that the influence of a gauged site on the estimation of the target site in the DBRFA
approach is proportional to the hydrological similarity between these two sites. Hence,
the weight function takes a bell shape in a 3-D presentation (Fig. 6b). However, with the
CCA approach, the weight function (5) takes only two values, 1 within the neighborhood
of the target-site or 0 otherwise (Fig. 6a).5

To study the impact of depth iterations on the performance of the DBFRA method,
this approach is applied to the three regions but without iterations on the Mahalanobis
depth (i.e. kiter = 2 in step i in the DBRFA optimization procedure). The outputs of this
application, with ϕ =ϕG and ζ (.) = RRMSE, are shown in Table 2. These results in-
dicate that the optimal weight function changes depending on the case (with or with-10

out iterations) but keeps the S shape. In addition, using the iterations, we observe
an improvement in the performance of the DBRFA method. This improvement varies
from one region to another where it is more significant in Quebec than in Texas and
Arkansas (Table 2). This is another result indicating a difference between Quebec and
the two other regions. Note that similar results are found for other families of weight15

functions and for different optimization criteria. In conclusion, the depth iterative step in
the DBRFA before weight optimization is important.

In order to examine the convergence speed in terms of the performance criteria,
we present the variations of these criteria as a function of the iteration number of Ma-
halanobis depth for different weight functions (Fig. 7). The employed coefficient val-20

ues of the weight functions are those minimizing the RRMSE (Table 1). We observe
a rapid convergence (5 iterations) to the RRMSE values in Table 1 for Arkansas and
Texas (Fig. 7b, c), whereas, for Quebec (Fig. 7a) it requires more than 20 iterations
to converge to the results in Table 1. These results could be again due to the level of
homogeneity in the region.25

To compare the relative errors of flood quantile estimates obtained by different ap-
proaches for the three regions, Fig. 8 illustrates these errors with respect to the log-
arithm of basin area. The weight functions used are those optimizing the RRMSE. It
is generally observed that the DBRFA relative errors are lower than those obtained
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with the CCA approach. We also observe large negative errors for some sites, such as
number 64 and 66 in the southern Quebec, 180 and 175 in Arkansas and 62 and 69 in
Texas.

6 Conclusions

In the present paper, a procedure is proposed to optimize the selection of a weight5

function in the DBRFA approach. This procedure automates the optimal choice of the
weight function ϕ with respect to a given criterion. Therefore, aside from leading to op-
timal estimation results, it allows the DBRFA approach to be more practical and usable
without the user’s subjective intervention. The user has only to select one or several
criteria to obtain the model, the estimated performance and the weight functions for10

a specific region. One of the findings is that the optimal weight function can be seen as
characterization of the associated region.

General and flexible families of weight function are considered, as well as two opti-
mization algorithms to find optimal ϕ. The used algorithms can handle cases with or
without constraints on the definition domain of the function ϕ.15

The obtained results, from three regions in North America, show the utility to consider
the DBRFA method in terms of performance as well as the efficiency and flexibility of
the proposed optimization procedure.

The study of the three regions shows an association between the level of the ho-
mogeneity of the region, the form of the optimal weight function and the computation20

convergence speed. This result deserves to be developed in future work.
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Table 1. Quantile estimation result with the various approaches.

Region

Southern Quebec (Canada) Arkansas (United States) Texas (United States)

QS10 QS100 Q10 Q50 Q10 Q50

Ojective Weight Optimal RB RR RB RR Optimal RB RR RB RR Optimal RB RR RB RR
function function coeffi- MSE MSE coeffi- MSE MSE coeffi- MSE MSE
ζ ϕ cients (%) (%) (%) (%) cients (%) (%) (%) (%) cients (%) (%) (%) (%)

− ϕU − −8.60 55.00 −11.0 64.00 − −13.2 65.48 −15.1 73.34 − −9.70 46.50 −13.8 61.00

RRMSE ϕCCA α = 0.25 −7.54 44.62 −8.14 51.84 α = 0.01 −7.80 48.16 −9.31 59.50 α = 0.05 −1.20 42.30 −7.40 57.40
or RB

RRMSE

ϕG
a = 30.5 −3.55 38.70 −2.20 44.50

a = 97 −6.00 41.50 −6.33 47.70
a = 129.7 −1.01 36.86 −6.00 50.79b = 7 b = 25 b = 35.4

ϕlogistic
a = 2537.5 −3.85 39.20 −2.80 44.90

a = 11863 −6.18 41.53 −6.52 47.65
a = 3618 −0.90 36.84 −5.00 49.50b = 14.8 b = 54.149 b = 50.1

ϕLinear
C1 = 0.30 −3.60 38.94 −2.25 44.65

C1 = 0.157 −5.90 40.90 −6.37 47.11
C1 = 0.116 −2.81 38.20 −6.37 49.51C2 = 0.80 C2 = 0.162 C2 = 0.152

RB

ϕG
a = 55 −3.50 39.10 −2.30 44.90

a = 23.950
–5.80 41.52 –6.29 47.70

a = 2134 −0.80 37.90 −6.20 52.17b = 9 b = 13.661 b = 43

ϕlogistic
a = 2791 −3.70 39.30 −2.70 45.00

a = 19593.7 −6.10 41.67 −6.49 47.70
a = 3618.2

–0.80 37.70 –4.90 50.90b = 15 b = 58.417 b = 50.3

ϕLinear
C1 = 0.296

–3.20 38.90 –1.90 44.70
C1 = 0.093 −5.87 41.67 −6.35 47.74

C1 = 0.100 −0.90 39.20 −5.50 50.95C2 = 0.768 C2 = 0.267 C2 = 0.112

Best results for each region are in bold character.
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Table 2. Results of the DBRFA Approach With and Without Depth Iterations using ζ (.) =
RRMSE and ϕ =ϕG.

Region

Southern Quebec (Canada) Arkansas (United States) Texas (United States)

QS10 QS100 Q10 Q50 Q10 Q50

Optimal RB RR RB RR Optimal RB RR RB RR Optimal RB RR RB RR
coeffi- MSE MSE coeffi- MSE MSE coeffi- MSE MSE
cients (%) (%) (%) (%) cients (%) (%) (%) (%) cients (%) (%) (%) (%)

With a = 30.5 −3.55 38.70 −2.20 44.50
a = 97 −6.00 41.50 −6.33 47.70

a = 129.7 −1.01 36.86 −6.00 50.79
iteration b = 7 b = 25 b = 35.4
Without a = 66.50 −6.60 47.05 −7.52 55.07

a = 721 −7.24 42.87 −8.64 50.34
a = 186.7 −1.60 38.29 −6.29 51.00

iteration b = 14.25 b = 81 b = 42.65
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Fig. 1. Illustration of Gompertz function: (a) c varies with fixed a and b, (b) b varies with fixed
a and c and (c) a varies with fixed b and c.
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Fig. 2. Optimal value of the neighborhood coefficient α for the CCA approach for: (a) Southern
Quebec, (b) Arkansas and (c) Texas. The first column illustrates the RB and the seond column
illustrates the RRMSE.
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Fig. 3. Station locations in the canonical spaces for: (a) Southern Quebec, (b) Arkansas and
(c) Texas. The first column of each subfigure illustrates the physio-meteorological (V1, V2)
canonical space and the second column illustrates the hydrological (W1, W2) canonical space.
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Fig. 4. Scatterplot of sites in the canonical spaces (V1, W1) and (V2, W2) for: (a) Southern
Quebec, (b) Arkansas and (c) Texas. The first column of each subfigure illustrates the canonical
(V1, W1) space and the second column illustrates the (V2, W2) space.
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Fig. 5. Optimal weight functions for: (a) Southern Quebec, (b) Arkansas and (c) Texas. The
first column of each subfigure illustrates the weight functions optimal with respect RRMSE and
the second column illustrates the weight functions optimal with respect RB.
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Fig. 6. Weight allocated to each gauged-site to estimate the target-site number 25 in the Texas
region in the Canonical hydrological space (W1, W2) using: (a) CCA with optimal α and (b) the
DBRFA approach with optimal ϕG.
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Fig. 7. Variation of criteria (RB and RRMSE) as a function of the depth iteration number for the
estimation of (a) QS100-Southern Quebec, (b) Q50-Arkansas and (c) Q50-Texas.
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Fig. 8. Relative quantile errors using: (a) ϕCCA and (b) ϕG. The first column illustrates the error
of QS100 in southern Quebec, the second column illustrates the errors of Q50 in Arkansas and
the third column illustrates the errors of Q50 in Texas.
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